3.68 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=117 \[ \frac{2 (A+3 C) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \sqrt{b \sec (c+d x)}}{3 b^2 d}+\frac{2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*(A + 3*C)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*b^2*d) + (2*A*Tan[c + d*x])/(3*d*(b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.13387, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {4047, 3771, 2639, 4045, 2641} \[ \frac{2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{3 b^2 d}+\frac{2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*(A + 3*C)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*b^2*d) + (2*A*Tan[c + d*x])/(3*d*(b*Sec[c + d*x])^(3/2))

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=\frac{B \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx}{b}+\int \frac{A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\\ &=\frac{2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac{(A+3 C) \int \sqrt{b \sec (c+d x)} \, dx}{3 b^2}+\frac{B \int \sqrt{\cos (c+d x)} \, dx}{b \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}+\frac{\left ((A+3 C) \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 b^2}\\ &=\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{3 b^2 d}+\frac{2 A \tan (c+d x)}{3 d (b \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 1.3242, size = 179, normalized size = 1.53 \[ -\frac{i e^{-i (c+d x)} \left (4 (A+3 C) e^{2 i (c+d x)} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )-12 B e^{i (c+d x)} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+\sqrt{1+e^{2 i (c+d x)}} \left (A \left (-1+e^{2 i (c+d x)}\right )+6 B e^{i (c+d x)}\right )\right )}{3 b d \sqrt{1+e^{2 i (c+d x)}} \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

((-I/3)*(Sqrt[1 + E^((2*I)*(c + d*x))]*(6*B*E^(I*(c + d*x)) + A*(-1 + E^((2*I)*(c + d*x)))) - 12*B*E^(I*(c + d
*x))*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 4*(A + 3*C)*E^((2*I)*(c + d*x))*Hypergeometric2
F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(b*d*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Sqrt[b*Sec[c + d*
x]])

________________________________________________________________________________________

Maple [C]  time = 0.262, size = 602, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x)

[Out]

2/3/d*(I*A*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*sin(d*x+c)+3*I*B*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(
I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-3*I*B*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+3*I*C*cos(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin
(d*x+c),I)*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+I*A*(1/(cos(d*x+c)+1))^(1/2)*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+3*I*B*EllipticF(I*(-1+c
os(d*x+c))/sin(d*x+c),I)*sin(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-3*I*B*sin(d*x+c
)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+3*I*C*s
in(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
-A*cos(d*x+c)^3-3*B*cos(d*x+c)^2+A*cos(d*x+c)+3*B*cos(d*x+c))/cos(d*x+c)^2/(b/cos(d*x+c))^(3/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c))/(b^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(3/2), x)